
Exploring CPU Microarchitecture Design with RV32IM Instruction Set
Architecture

Krishbin Paudel1, Bibek Pariyar2

krishbinp@outlook.com, 076bei012.bibek@pcampus.edu.np

Abstract

The RV32I processor that we are going to create here is a
variant of the RISC-V architecture that implements the integer
instruction set. It is a 32-bit processor with a simple and elegant
design that emphasizes modularity, extensibility, and flexibil-
ity. The RV32I processor supports a wide range of applications,
including embedded systems, microcontrollers, and low-power
devices.

The RV32I processor implements a subset of the RISC-V
instruction set that includes basic integer arithmetic and logical
operations, as well as memory access and control flow instruc-
tions. It also supports a number of extensions that can be added
to the core instructions.

Verilog was the hardware language of choice here to study
and develop the architecture. Simulations of verilog code were
done in Icarus Verilog toolchain. An assembler was written by
us to translate the assembly code to machine code.

Unlike other popular CPU micro-architecture, RISC-V is
open source. Its Instruction Set Architecture is freely available
to read and implement. The main focus of this article is to recre-
ate a RV32IM architecture and run some programs on it. The
architecture design and the components that builds it up will be
discussed.

The conclusion reflects on the current state of RV32IM mi-
croarchitecture design and its potential future developments. It
emphasizes the impact of open-source hardware on democratiz-
ing access to advanced computing technologies and the role of
the RV32IM ISA in driving this paradigm shift
Index Terms: RV32I processor, RISC-V architecture, integer
instruction set, 32-bit processor, modularity, extensibility, flexi-
bility, embedded systems, microcontrollers, low-power devices,
arithmetic operations, logical operations, memory access

1. Introduction
RISC-V dates back to 2010 which was spun up as a research
project in UC, Berkeley. Since then it has gain popularity in
both academic and industry circles. RISC-V is an open-source
Instruction Set Architecture(ISA) and stands as ”Reduced In-
struction Set Architecture Five”. Its name is a general architec-
ture shift RISC has gone through the years and V is a representa-
tion its fifth iteration. The open source nature of RISC-V allows
anyone to design, implement and sell RISC-V based processors
without the need to pay royalties or license fees. With more
than a billion devices already in the market, adoption of RISC-
V has surged an all time high. RISC-V is increasingly being
used in various applications, including mobile devices, embed-
ded systems, and high-performance computing. The flexibility
of the architecture and the open-source nature of its develop-

ment make it an attractive option for many developers and com-
panies.

1.1. RISC-V ISA

RISC-V ISA is an Instruction Set Architecture (ISA) that de-
fines the set of instructions that a processor can execute. It is
a type of Reduced Instruction Set Computing (RISC) architec-
ture that is designed to be simple, modular, and extensible. The
RISC-V ISA includes a small core set of instructions that are
common to all implementations, as well as optional instruction
extensions that can be added to support specific applications
or workloads. This modular design allows RISC-V to be cus-
tomized for different use cases, without sacrificing compatibil-
ity with the core instruction set. RISC-V also supports a range
of addressing modes, from simple load-store operations to more
complex operations for managing memory and accessing I/O
devices. It also provides support for virtual memory and ex-
ception handling, which are essential for operating systems and
other software that runs on top of the hardware.

1.2. RV32IM

RV32I is a subset of the RISC-V Instruction Set Architec-
ture (ISA) that includes the core integer instructions for 32-bit
RISC-V processors. The ”RV32” part of the name indicates
that this subset is designed for 32-bit processors, while the ”I”
indicates that it includes only integer instructions. [1]

The RV32I subset includes a total of 47 instructions, which
cover basic arithmetic and logical operations, memory access,
control flow, and other common operations.
Some of the key instructions included in RV32I are:

• add, sub, and, or, xor: basic arithmetic and logical operations
• load and store: memory access operations
• branch and jump: control flow instructions for branching and

jumping to different parts of a program
• lui and auipc: instructions for loading immediate values into

registers
• csr and fence: instructions for single stepping and control

registers

1.2.1. RV32I Instruction Encoding

The RISC-V Instruction Set Architecture (ISA) uses a fixed-
length instruction encoding format. For RV32I, each instruction
is encoded using 32 bits, which is the standard word size for 32-
bit RISC-V processors. [1]

The 32-bit instruction word is divided into several fields,
each of which specifies a different aspect of the instruction. The
exact layout of the fields varies depending on the instruction,



but there are some common fields that are used by many in-
structions in the RV32I subset.

In RISC-V, there are six primary types of instruction en-
codings that are used to specify different types of operations
and operand.

1. R-Type
2. I-Type
3. S-Type

4. B-Type
5. U-Type
6. J-Type

1.2.2. Registers

Table 1: RV32I Register Names and Indices

Register Abbreviation Index
x0 zero 0
x1 ra 1
x2 sp 2
x3 gp 3
x4 tp 4

x5-x7 t0-t2 5-7
x8 s0/fp 8
x9 s1 9

x10-x11 a0-a1 10-11
x12-x17 a2-a7 12-17
x18-x27 s2-s11 18-27

x28 t3 28
x29 t4 29
x30 t5 30
x31 t6 31

1. PC: Program Counter
2. SP: Stack Pointer
3. LR: Link Register
4. GP: Global Pointers

Register are used for storing data, addresses and control in-
formation during program execution.

1.2.3. Control and Status Registers

CSR (Control and Status Registers) are a type of special-
purpose register in RISC-V processors, including those based
on the RV32I ISA. These registers are used to store control
and status information related to the processor and its opera-
tion. They are accessible only via special instructions called
”CSR instructions”.[1] In RV32I, there are 4096 CSR registers
defined by the RISC-V specification. Each CSR is identified by
a unique 12-bit address, ranging from 0x000 to 0xFFF. These
addresses are used as operands for the CSR instructions.

2. ApiCore-RISCV RV32I Design
ApiCore is the name of the CPU microarchitecture we devel-
oped using RISC-V ISA.

2.0.1. Features

• 32 bit RISCV CPU
• 32-bit word length
• 32-bit address bus
• Based on RV32I

• 32 32-bit registers
• Harvard Architecture
• In order execution
• 8KB ROM, 64KB RAM
• 100 MHz clock speed

2.1. Architecture

The architecture of our CPU includes a Arithmetics and Logic
Unit, Load and Store Unit, Memory Interface Unit, Instruction
Fetch Unit, Instruction Decode and Control Unit, Execution
Unit.

Figure 1: ApiCore

2.2. Execution Unit

Figure 2: RV32I Execution Unit

In RV32I, the Execution Unit (EXU) is a functional unit
that performs the actual computation specified by the instruc-
tion. The EXU contains several subunits that work together to
execute instructions:
• Arithmetic and Logic Unit (ALU)
• Branch Unit
• Multiplication/Division Unit



• Shift Unit
The EXU is responsible for executing all types of instructions
that require computational operations, including arithmetic,
logic, shift, and branch/jump instructions. It receives control
signals from the Instruction Decode and Control Unit (IDCU)
and generates the appropriate results based on the operands and
operation specified by the instruction.

2.3. Arithmetics and Logic Unit

In RV32I, the Arithmetic and Logic Unit (ALU) is a subunit of
the Execution Unit (EXU) that performs arithmetic and logic
operations on data. The ALU is responsible for executing most
arithmetic and logic instructions in the RV32I instruction set
architecture. The ALU can perform operations such as addition,
subtraction, logical AND/OR/XOR, and bit shifting.

The opcodes are necessary to determine the type of instruc-
tion. This can be different on other architecture but is defined
as such for ApiCore. We will later see that it is the job of In-
struction decoder to feed this opcode to ALU.

2.3.1. ALU Opcode

Instruction Type Instruction d4: d3 : d2-d1
Addition/Subtraction ADD 0:0:000
Addition/Subtraction SUB 0:1:000

Logical AND AND 0:0:111
Logical OR OR 0:0:110

Logical XOR XOR 0:0:100
Shift Left Logical SLL 0:0:001

Set Less Than SLT 0:0:010
Set Less Than Unsigned SLTU 0:0:011

Shift Right Logical SRL 0:0:101
Shift Right Arithmetic SRA 0:1:101

Table 2: Opcode of ALU instructions in RV32I

2.4. Load and Store Unit

In RV32I, the Load and Store Unit (LSU) is a subunit of the pro-
cessor that is responsible for handling memory operations. The
LSU is designed to manage the data transfer between the pro-
cessor’s registers and the main memory. The LSU can perform
two types of memory operations:
• Load Operations
• Store Operations
In RV32I, the LSU is also responsible for managing the align-
ment of data when transferring it between the registers and
memory. This is important because some memory architec-
tures require that data be aligned on specific byte boundaries.
The LSU works in conjunction with the Data Memory Interface
Unit (DMIU), which provides the LSU with access to the main
memory. The DMIU handles the actual data transfer between
the processor and memory, while the LSU manages the mem-
ory addresses and data alignment.

2.4.1. LSU Opcode

2.5. Branch Unit

In RV32I, the Branch Unit (BRU) is a subunit of the processor
that is responsible for handling branch instructions. The BRU is
designed to calculate the target address of a branch instruction

Instruction Type Instruction func3 : opcode(d6:d4)
Load Byte LB 000:00000

Load Half Word LH 001:00000
Load Word LW 010:00000

Load Byte Unsigned LBU 100:00000
Load Half Word Unsigned LHU 101:00000

Store Byte SB 000:01000
Store Half Word SH 001:01000

Store Word SW 010:01000
Table 3: Opcode of LSU instructions in RV32I

and to determine whether the branch should be taken or not.
The BRU takes the instruction opcode and the operands as in-
put, and based on the instruction type, it can calculate the target
address for the branch. The target address is typically calculated
by adding a signed offset to the current program counter (PC)
value. Once the target address is calculated, the BRU compares
it with the current PC value and determines whether the branch
should be taken or not. If the branch is taken, the BRU updates
the PC value with the target address, causing the program to
jump to the specified location in memory. In RV32I, the BRU
can handle several types of branch instructions, including:
• Conditional Branch Instructions
• Unconditional Jump Instructions
• Call Instructions
• Return Instructions
The BRU works in conjunction with the Instruction Fetch Unit
(IFU) and the Instruction Decode and Control Unit (IDCU),
which fetch and decode the branch instructions, respectively.
The BRU is a critical component of the processor in RV32I, as
it allows the processor to implement control flow in software,
which is essential for many computing tasks.

2.5.1. BR Opcode

Instruction Type Instruction bropcode:: func3
If Equal BEQ 000

If Not Equal BNE 001
If Less Than BLT 100

If Greater or Equal BGE 101
If Less Than (U) BLTU 110

If Greater or Equal (U) BGEU 111
Table 4: Opcode of BR instructions in RV32I

2.6. Decoder and Control Unit

In RV32I, the Instruction Decode and Control Unit (IDCU) is
a subunit of the processor that is responsible for decoding in-
structions and generating control signals for the other subunits
of the processor. The IDCU takes the instruction opcode and
operands as input and decodes the instruction to determine the
operation that needs to be performed. It then generates the con-
trol signals required by the Arithmetic and Logic Unit (ALU),
Load and Store Unit (LSU), Execution Unit (EXU), and other
subunits of the processor.

Mainly there is a control signal to control which data to
direct to exu and which data to get from exu. Other control
signals include to enable read and write from registers, enable



read and write from csr. The decoded instruction are matched
and required data are provided to the Execution Unit.

2.6.1. Block Diagram of Decoder and Control Unit

Figure 3: Block Diagram of Decoder and Control Unit

2.7. Register File

In RV32I, the Register File is a subunit of the processor that
is responsible for storing the processor’s general-purpose regis-
ters. The Register File consists of a set of 32 registers, each of
which is 32 bits wide. These registers are used for storing data
and intermediate values during the execution of programs. The
Register File has two read ports and one write port. The two
read ports allow two operands to be read from the Register File
simultaneously, while the write port allows one operand to be
written to the Register File.

3. Results

All the architecture is written in Verilog which is available at
https://github.com/krishbin/apicore.

3.1. A Fibonacci Series Assembly Program for RV32IM

addi x4, x0, 0x0 // count = 0
addi x5, x0, 0x0d // n = 10
addi x2, x0, 0x00 // a = 0
addi x3, x0, 0x01 // b = 1
start: sb x2, 0(x4) // store a

add x1, x2, x3 // temp = a + b
add x2, x0, x3 // a = b
add x3, x0, x1 // b = temp
addi x4, x4, 0x1 // count++
bne x5, x4, start

addi x0, x0, 0x0 // nop
addi x0, x0, 0x0 // nop
addi x0, x0, 0x0 // nop
addi x0, x0, 0x0 // nop
addi x4, x0, 0x0 // count = 0
print: lbu x3, 0(x4)

addi x4, x4, 0x1
bne x5, x4, print
beq x5, x4, end

addi x0, x0, 0x0 // nop
end: addi x0, x0, 0x0 // nop

3.1.1. RAM Dump

Figure 4: Fibonacci RAM Dump

3.1.2. Simulation Waveform

Figure 5: Fibonacci Simulation Waveform

4. Discussion
Implementing RV32I in Verilog is a complex task that requires
a deep understanding of both the RISC-V architecture and Ver-
ilog hardware description language. However, the process of
implementing RV32I in Verilog can provide several valuable
insights into processor design and computer architecture. First
and foremost, implementing RV32I in Verilog can provide a
better understanding of the RISC-V architecture itself. By im-
plementing the different components of the RV32I processor in
Verilog, one can gain a deeper understanding of how the various
components of the processor work together to execute instruc-
tions. This can include understanding how the instruction fetch,
decode, and execute stages work, as well as how the various
types of instructions are implemented in hardware.

5. References
[1] “Risc-v instruction set manual, volume i: Risc-v user-level

isa,” Dec 2019. [Online]. Available: https://riscv.org/wp-content/
uploads/2019/06/riscv-spec.pdf


	 Introduction
	 RISC-V ISA
	 RV32IM
	 RV32I Instruction Encoding
	 Registers
	 Control and Status Registers


	 ApiCore-RISCV RV32I Design
	 Features
	 Architecture
	 Execution Unit
	 Arithmetics and Logic Unit
	 ALU Opcode

	 Load and Store Unit
	 LSU Opcode

	 Branch Unit
	 BR Opcode

	 Decoder and Control Unit
	 Block Diagram of Decoder and Control Unit

	 Register File

	 Results
	 A Fibonacci Series Assembly Program for RV32IM
	 RAM Dump
	 Simulation Waveform


	 Discussion
	 References

